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Composite rheology 
Part 2 Effect of filler on the mechanical properties of 
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A model has been developed for explaining the modulus behaviour of filled elastomers. 
This model is suitable over a broad temperature range extending from well below the 
glass transition temperature to well above the rubbery region (see Fig. 1 for region 
definition). Results show that the rheological behaviour of polymer systems is of critical 
importance in determining the effect of filler on modulus. In the rubbery region, the 
effect of filler on modulus is more pronounced than it is outside the rubbery region. 
Within the leathery region (glass transition region), the effect of filler on modulus is 
very sensitive to small changes in temperature, and, as the temperature approaches that 
of the glass transition temperature, the effect of filler on modulus becomes very small. 
Finally, in the glassy region, the effect of filler on modulus is small and insensitive to 
temperature changes. 

1. Introduction 
In a previous study [1], we examined the effects 
of filler loadings on polymer viscosity. We wish 
to expand this study to include the influence 
of filler on the mechanical properties of polymers 
such as modulus. Since we expect the effects of 
filler on mechanical properties will depend on 
temperature range, as well as on the rheological 
character of the polymer of interest, we studied 
the mechanical properties of filled polymers over 
a wide temperature range. Such a study is of 
practical interest since filled elastomers are 
commonly used as engineering materials over a 
wide service temperature range. 

2. Composite mechanics and relaxation 
spectra of filled polymers 

There are many models dealing with the mech- 
anical properties of filled polymers. Recently, 
Chow [2] has given an extensive review of these 
models. These models generally give reasonable 
correlations between modulus and filler; however, 
these correlations rarely reflect temperature 
dependence or quantify polymer-filler inter- 
actions over a broad temperature range. 
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Conventionally, the hydrodynamic model 
which was developed by Einstein [3] is used to 
explain the viscosity of filled elastomer systems. 
The hydrodynamical model is written as: 

r/ = no (1 + 2.5~) (1) 

where r~ and r?0 are the viscosity of the filled 
and unfilled elastomer, respectively, and q~ is the 
volume fraction of filler. Later, Guth and Gold 
[4] modified Einstein's model to include a second- 
order term. The modified model can be written as: 

r~ = r/0 (1 + 2.5~ + 14.1q~ ~) (2) 

By substituting modulus for viscosity in Equations 
1 and 2, these hydrodynamic models have also 
been used in attempts to explain the modulus of 
filled elastomers [5, 6]. However, it has been 
found by Hsich [1] that the relationship between 
viscosity and filler loading is temperature depen- 
dent instead of having a simple rationship are 
shown in Equation 2. The effect of filler on 
viscosity is more pronounced at high tempera- 
tures, but less pronounced at low temperatures. 
In other words, the dependence of viscosity on 
filler can be expressed as a function of the tem- 
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Figure I The mechanical spectrum of polymers. 

perature difference ( T - - T  g). When the tem- 
perature, T ,  is near the glass transition tempera- 
ture, Tg, the difference in viscosity between filled 
and unfilled elastomers becomes small. It is 
expected that the modulus of filled elastomers 
will follow the same behaviour as viscosity. 

Recently, the mechanical spectra of filled 
elastomer systems have been studied by Hsich 
et al. [7]. The shear storage modulus, G', and 
mechanical loss factor, tan 6, were obtained on 
natural rubber samples at various filler loadings. 
These data, measured at art angular frequency 
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of co = 10radsec -a are replotted in Figs. 2 and 3. 
As has been mentioned earlier [1, 7], for these 
natural rubber samples, the glass transition tem- 
perature, Tg, and relaxation peak temperature, 
Trp, are unaffected by filler loadings and/or 
degree of vulcanization. 

Broadening the structural relaxation spectrum 
of polymers by increased filler loadings resulted 
in our extension of the leathery region into the 
rubbery region for high s loadings as shown 
in Figs. 2, 3. As a consequence of this broadening 
effect, the statistical theory of Gaussian networks 
for the rubbery region [8] can no longer explain 
the mechanical properties of filled elastomers. 

Flory [6] has stated that elastomeric materials 
can be considered to be in a non-relaxation state 
and to have a "perfect network" structure. The 
"perfect network" is defined as having no free 
chain ends; i.e. the primary molecular weight, 
M, is infinite. Then, from the statistical theory of 
Gaussian networks in an ideal rubbery state [8], 
the elastic modulus of a rubbery material can be 
expressed as: 

3 p R  
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Figure 2 Relationship of the shear storage modulus, G', with temperature for three different filler loadings. 
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Figure 3 Relationship of the mechanical loss factor, tan 6, with temperature for three different filler loadings. 
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where p is the density, R is the gas constant, M e 
is the molecular weight per cross-linked unit and 
M is the primary molecular weight of the polymer. 
For an ideal rubber, the elastic modulus, (or 
Young's modulus) E, is equal to three times the 
shear modulus, G. However, in practice, all net- 
works have free chain ends which may be regarded 
as flaws in the structure. By considering these 
network defects, Flory [6] assumed that any real 
network must contain terminal chains bound at 
one end to a cross-linkage and terminated at 
the other by the end (free end) of a primary 
molecule. Then, the elastic modulus of a rubbery 
material can be modified from Equation 3: 

E = -" [J - -  ( 4 )  

Recently, a hybrid equation which incorporates 
principles of the WLF equation [9] and the 
statistical theory of Gaussian networks for the 
rubbery state has been developed recently by 
Hsich et al. [7]. This equation explains and pre- 
dicts the mechanical properties of filled and 
unfilled elastomers over a broad temperature 
range. The hybrid equation for the shear modulus 

of elastomers is written as: 

v T (  G ~ooT) --CI(T--Tg ) C ~  -+-~:-T~g) G = G o - ~ +  g - G 0  exp 

(s) 

where Gg and Go are the shear moduli at the glass 
transition temperature, Tg, and the reference 
temperature, To, which is the lowest temperature 
at which ideal rubber behaviour begins. C1 and 
C2 are the same constants used in the WLF equa- 
tion [9]. When C1 is large, the exponential term 
in Equation 5 becomes negligibly small at tem- 
peratures considerably greater than Tg. In this 
case, Equation 5 can be simplified so that modulus 
is linearly proportional to temperature as in 
Equations 3 and 4. 

On the other hand, if Gg/T is much larger 
than Go/To, then Equation 5 resembles the WLF 
equation and can be written as: 

- q ( r -  
G = Gg exp C~ + (T- -Tg)  (6) 

The hybrid equation (Equation 5) gives a satis- 
factory prediction of the mechanical properties 
of filled elastomers over a broad temperature 
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Figure 4 A plot of the shear storage modulus against temperature for natural rubber with 10 phr filler loading. 
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range. This can be seen from Figs. 4 to 6 which 
were replotted from [7]. Fig. 4 plots the shear 
storage modulus for natural rubber with 10phr 
filler loading against temperature. It can be seen 
that at high temperatures (considerably above the 
glass transition temperature) modulus increases 
with increasing temperature. This is ideal rubbery 
behaviour as described by the statistical theory of 
Gaussian networks for the rubber state [12]. 
As filler loading increases to 20 phr, the trend of 
increasing modulus with increasing temperature is 
less pronounced as shown in Fig. 5. Here, the 
WLF equation also gives an improved prediction 
of the modulus. Finally, at a filler loading of 50 
phr, the glass transition region or the structural 
relaxation spectrum becomes very broad. Con- 
sequently, both the WLF and hybrid equations 
give excellent predictions of the modulus over a 
broad temperature range as shown in Fig. 6. 
These data clearly show the broadening effects 
that increased Idler loadings have on the polymer 
mechanical spectrum. Filler variations do not, 
however, have a marked effect on the glass 
transition temperature (Fig. 2). 
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The above discussion has demonstrated the 
effect of temperature on modulus at specific filler 
loadings. In the discussion to follow we will 
discuss the effect of filler on modulus at specific 
temperatures. 

3. Experimental results and discussion 
The shear storage modulus, G', of natural rubber 
at various filler loadings (carbon black N-330) 
was measured on a Rheometrics Mechanical 
Spectrometer operating in a torsion-rectangular 
testing mode at an angular frequency (~) of 
10 rad sec -1 at 0.2% strain. 

Plots of the shear storage modulus against filler 
loading at various temperatures are shown in 
Figs. 7 to 9. Fi.g. 7 represents the rubbery region 
at temperatures from --40 to 100~ Fig. 8, 
the glass transition region, has a temperature 
range from - -60  to - -45  ~ C. Finally, Fig. 9 
represents the glassy region at temperatures from 
--100 to --65 ~ C. It can be seen from Figs. 7 
to 9 that a linear relationship exists between 
modulus and fdler loading at all temperatures 
when the data are plotted semi-logarithmically. 
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Figure 5 The shear storage modulus plotted against temperature for natural rubber with 20 phr filler loading. 
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Therefore, the shear storage modulus, G', can be 
expressed as a simple function of filler loading, 4, 
as follows: 

G'(4) 
in G'(40~ - K(4 -- 40) (7) 

where G'(4) and G'($0) are the shear storage 
moduli at a filler loading, 4, and a reference filler 
loading, 40, respectively. K is the slope obtained 
from plots of in G' against 4. K is a measure of 
the degree of polymer-filler interaction. In 
Fig. 10, there are plots of various values of the 
slope, K, against temperature. It can be seen from 
Fig. 10 that K is much more temperature sensitive 
in the glass transition region (--60 to - -45 ~ C) 
than in either the robbery or glassy regions. 
We conclude that the degree of polymer-filler 
interaction in the glassy region is much less than 
the degree of polymer-filler interaction in the 
rubbery region. This large difference in polymer-  
filler interaction between these two regions is 
reflected by the high sensitivity of K in the glass 
transition region. 

We can model K effectively by considering all 
three temperature regions separately. For example, 

from Fig. 10, we see that K decreases slightly 
with increasing temperature in the rubbery region 
(--40 to + 120~ A mathematical model 
describing this behaviour can be written as: 

K = a - - b l n T  (8) 

where a and b are constants and T is temperature 
in degrees Kelvin. In the glass transition region, 
the model of K is more complicated because 
of its high temperature sensitivity. Modulus 
depends on temperature much the same as viscosity 
for filled elastomers at constant shear rate or 
frequency to be: 

in ~-- = C(4 -- 40) T (T -- T4) (9) 
~7o 14 

where r~ and r~o are viscosities at filler loading, 
4, and a reference filler loading, 40, respectively, 
T is temperature, Tg is the glass transition tem- 
perature, and C is a constant. Similarly, a model 
for K in the glass transition region is given as: 

K = c ~ ( T - - T g )  (10) 
14 

where c is a constant. Finally, in the glassy region, 
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Figure 6 The shear storage modulus plotted against temperature for natural rubber with 50 phr filler loading. 
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Figure 7 The shear storage modulus plotted against loading in the rubbery region. 
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Figure 8 The shear storage modulus plotted against filler loading in the glass transition region. 
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Figure 10 A plot of K against temperature. 

the model for K is extremely simplified: 

K = d (11) 

where d is a constant. 
Using Equations 8, 10 and 11 we calculated 

values of K from --100 to +120  ~ These 
theoretical calculations are also plotted in Fig. 9. 
Values of the constants a, b, c and d used in these 
theoretical calculations were obtained by curve 
fitting the experimental data in Fig. 10 by a least 
squares technique. These values are listed in 
Table I. It can be seen in Fig. 10 that there is good 
agreement between the theoretical predictions and 
experimental values for K. 

4. Conclusion 
The effect of fdler on the modulus of filled 
elastomers has been studied. The study indi- 
cates markedly different effects of filler on 
modulus depending on the temperature region 
in question. The effect of Fdler on modulus is 

TABLE I Polymer-filler interaction constants 

Constant Value 

a 11.7 
b 2.91 
c (K -1 ) 0.248 
d 0.830 
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much greater in the rubbery region than in the 
glassy region. This is exemplified by the high 
sensitivity of the degree of polymer-filler inter- 
action in the glass transition region. 

These filler effects have been successfully 
modelled according to the temperature range 
of interest, i.e. glassy region, glass transition 
region and rubbery region. There is excellent 
agreement between the f'fller effects measured 
experimentally and those predicted from these 
models. 
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